Computes the required area of reinforcing steel for a singly reinforced rectangular concrete cross section. Takes into account axial force and moment. Only checks strength requirements. Does not apply minimum reinforcement requirements. Uses ACI 318-19.

Inputs

Number Name Object Type Description Optional
1 Thickness System.Double Thickness of the concrete section, in the display unit system. No
2 Width System.Double Width of the concrete section, in the display unit system. No
3 Depth to Steel System.Double Distance from the extreme compression fiber to the centroid of the reinforcement, in the display unit system. No
4 Comp Stress System.Double Specified concrete compressive strength, in the display unit system. No
5 Yield Stress System.Double Yield stress of reinforcing, in the display unit system. No
6 Moment System.Double Ultimate moment demand, in the display unit system. No
7 Axial System.Double Axial force (compression = negative, tension = positive), in the display unit system. No
8 Spirals System.Boolean Whether the section has conforming spiral reinforcement. Defaults to false. Yes
9 Max Iter System.Int32 Maximum number of iterations. Defaults to 20. Yes

Outputs

Number Name Object Type Description
1 Area System.Double The required area of reinforcing steel such that the factored nominal capacity exceeds the combined ultimate axial + moment demand.

Required Steel Area.PNG

This component solves for the required area of steel based on the following:

$$ P=-0.85F_c^\prime a b +A_s F_s $$

$$ \frac{M}{\phi}=A_s F_s \left(d-\frac{a}{2} \right)-P \left(\frac{t}{2}-\frac{a}{2}\right) $$

where $P$ is negative for compression and positive for tension

and $F_s$ is the stress in the steel, which is equal to $min\left(\epsilon E_s, F_y\right)$

Solving the first equation for $a$ yields:

$$ a=\frac{A_s F_s - P}{0.85 F_c^\prime b} $$

Then substituting for $a$ in the second equation:

$$ \frac{M}{\phi}=A_s F_s \left(d-\frac{A_s F_s - P}{2 \left(0.85 F_c^\prime b\right)}\right)-P \left(\frac{t}{2}-\frac{A_s F_s - P}{2 \left(0.85 F_c^\prime b\right)}\right) $$

$$ \frac{M}{\phi}=A_s F_s d - \frac{A_s^2 F_s^2 -A_s F_s P}{1.7 F_c^\prime b}-\frac{P t}{2} + \frac{P A_s F_s - P^2}{1.7 F_c^\prime b} $$

$$ \frac{M}{\phi}=A_s F_s d - \frac{A_s^2 F_s^2}{1.7 F_c^\prime b} + \frac{A_s F_s P}{1.7 F_c^\prime b}-\frac{P t}{2} + \frac{P A_s F_s}{1.7 F_c^\prime b} - \frac{P^2}{1.7 F_c^\prime b} $$

Moving $\frac{M}{\phi}$ to the right side yields:

$$ 0=A_s F_s d - \frac{A_s^2 F_s^2}{1.7 F_c^\prime b}+ \frac{A_s F_s P}{1.7 F_c^\prime b}-\frac{P t}{2} + \frac{P A_s F_s}{1.7 F_c^\prime b} - \frac{P^2}{1.7 F_c^\prime b}-\frac{M}{\phi} $$